Publications
You can also find my articles on my Google Scholar profile
Preprints
Bastin, S., Koldunov, A., Schütte, F., Gutjahr, O., Mrozowska, M. A., Fischer, T., Shevchenko, R., Kumar, A., Koldunov, N., Haak, H., Brüggemann, N., Hummels, R., Specht, M. S., Jungclaus, J., Danilov, S., Dengler, M., and Jochum, M.: Sensitivity of the tropical Atlantic to vertical mixing in two ocean models (ICON-O v2.6.6 and FESOM v2.5), EGUsphere [preprint], https://doi.org/10.5194/egusphere-2024-2281, 2024.
John, A., Beyer, S., Athanase, M., Sanchez-Benítez, A., Goessling, H. F., Hossain, A., Nurisso, M., Aguridan, R., Andrés-Martínez, M., Gaya-Àvila, A., Cheedela, S. K., Geier, P., Ghosh, R., Hadade, I., Koldunov, N. V., Pedruzo-Bagazgoitia, X., Rackow, T., Sandu, I., Sidorenko, D., Streffing, J., Vitali, E., and Jung, T. (in review). Global Storyline Simulations at the Kilometre-scale. Journal of Advances in Modeling Earth Systems (JAMES). https://doi.org/10.22541/essoar.173160166.64258929/v1
Rackow, T., Koldunov, N., Lessig, C., Sandu, I., Alexe, M., Chantry, M., Clare, M., Dramsch, J., Pappenberger, F., Pedruzo-Bagazgoitia, X., and Tietsche, S. (2024). Robustness of AI-based weather forecasts in a changing climate. arXiv preprint. https://arxiv.org/abs/2409.18529
Moon, J.-Y., Streffing, J., Lee, S.-S., Semmler, T., Andrés-Martínez, M., Chen, J., Cho, E.-B., Chu, J.-E., Franzke, C., Gärtner, J. P., Ghosh, R., Hegewald, J., Hong, S., Koldunov, N., Lee, J.-Y., Lin, Z., Liu, C., Loza, S., Park, W., Roh, W., Sein, D. V., Sharma, S., Sidorenko, D., Son, J.-H., Stuecker, M. F., Wang, Q., Yi, G., Zapponini, M., Jung, T., and Timmermann, A. (2024). Earth’s future climate and its variability simulated at 9 km global resolution. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2024-2491
Koldunov, N., Rackow, T., Lessig, C., Danilov, S., Cheedela, S. K., Sidorenko, D., Sandu, I., and Jung, T. (2024). Emerging AI-based weather prediction models as downscaling tools. arXiv preprint. https://arxiv.org/abs/2406.17977
2025
[74] Rackow, T., Pedruzo-Bagazgoitia, X., Becker, T., Milinski, S., Sandu, I., Aguridan, R., Bechtold, P., Beyer, S., Bidlot, J., Boussetta, S., Deconinck, W., Diamantakis, M., Dueben, P., Dutra, E., Forbes, R., Ghosh, R., Goessling, H. F., Hadade, I., Hegewald, J., Jung, T., Keeley, S., Kluft, L., Koldunov, N., Koldunov, A., Kölling, T., Kousal, J., Kühnlein, C., Maciel, P., Mogensen, K., Quintino, T., Polichtchouk, I., Reuter, B., Sármány, D., Scholz, P., Sidorenko, D., Streffing, J., Sützl, B., Takasuka, D., Tietsche, S., Valentini, M., Vannière, B., Wedi, N., Zampieri, L., and Ziemen, F. (2024). Multi-year simulations at kilometre scale with the Integrated Forecasting System coupled to FESOM2.5 and NEMOv3.4, Geosci. Model Dev., 18, 33–69, https://doi.org/10.5194/gmd-18-33-2025
[73] Oziel, L., Özgür Gürses, Sinhué Torres-Valdés, Clara J. M. Hoppe, Björn Rost, Onur Karakuş, Christopher Danek, Boris P. Koch, Cara Nissen, Nikolay Koldunov, Qiang Wang, Christoph Völker, Morten Iversen, Bennet Juhls & Judith Hauck. (2025). Climate Change and terrigenous inputs decrease the efficiency of the future Arctic Ocean’s biological carbon pump. Nat. Clim. Chang. https://doi.org/10.1038/s41558-024-02233-6
2024
[72] Xu, J., Wu, H., Zhi, X., Koldunov, N. V., Zhang, X., Xu, Y., Zhang, Y., Guo, M., Kong, L., and Fraedrich, K. (2024). Validation of Multisource Altimeter SWH Measurements for Climate Data Analysis in China’s Offshore Waters. Remote Sensing, 16(12), 2162. https://doi.org/10.3390/rs16122162
[71] Brüggemann, N., Losch, M., Scholz, P., Pollmann, F., Danilov, S., Gutjahr, O., et al. (2024). Parameterized internal wave mixing in three ocean general circulation models. Journal of Advances in Modeling Earth Systems, 16, e2023MS003768. https://doi.org/10.1029/2023MS003768
[70] Liu, C., Wang, Q., Danilov, S., Koldunov, N., Müller, V., Li, X., et al. (2024). Spatial scales of kinetic energy in the Arctic Ocean. Journal of Geophysical Research: Oceans, 129, e2023JC020013. https://doi.org/10.1029/2023JC020013
[69] Müller, V., Wang, Q., Koldunov, N., Danilov, S., Sidorenko, D., and Jung, T. (2024). Variability of eddy kinetic energy in the Eurasian Basin of the Arctic Ocean inferred from a model simulation at 1-km resolution. Journal of Geophysical Research: Oceans, 129, e2023JC020139. https://doi.org/10.1029/2023JC020139
[68] Li, X., Wang, Q., Danilov, S., Koldunov, N., et al. (2024). Eddy activity in the Arctic Ocean projected to surge in a warming world. Nature Climate Change, 14, 156–162. https://doi.org/10.1038/s41558-023-01908-w
[67] Wang, Q., Shu, Q., Bozec, A., Chassignet, E. P., Fogli, P. G., Fox-Kemper, B., Hogg, A. McC., Iovino, D., Kiss, A. E., Koldunov, N., Le Sommer, J., Li, Y., Lin, P., Liu, H., Polyakov, I., Scholz, P., Sidorenko, D., Wang, S., and Xu, X. (2024). Impact of increased resolution on Arctic Ocean simulations in Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development, 17, 347–379. https://doi.org/10.5194/gmd-17-347-2024
[66] Koldunov, N., and Jung, T. (2024). Local climate services for all, courtesy of large language models. Communications Earth & Environment, 5, 13. https://doi.org/10.1038/s43247-023-01199-1
2023
[65] Xu, Jingwei, Huanping Wu, Ying Xu, Koldunov, N. V., Xiuzhi Zhang, Lisha Kong, Min Xu, Klaus Fraedrich, and Xiefei Zhi. (2023). Validation of Nadir SWH and Its Variance Characteristics from CFOSAT in China’s Offshore Waters. Remote Sensing, 15(4), 1005. https://doi.org/10.3390/rs15041005
2022
[64] Kirillov, S., Dmitrenko, I., Babb, D. G., Ehn, J. K., Koldunov, N., Rysgaard, S., Jensen, D., and Barber, D. G. (2022). The role of oceanic heat flux in reducing thermodynamic ice growth in Nares Strait and promoting earlier collapse of the ice bridge. Ocean Science, 18, 1535–1557. https://doi.org/10.5194/os-18-1535-2022
[63] Uchida, T., Le Sommer, J., Stern, C., Abernathey, R. P., Holdgraf, C., Albert, A., Brodeau, L., Chassignet, E. P., Xu, X., Gula, J., Roullet, G., Koldunov, N., Danilov, S., Wang, Q., Menemenlis, D., Bricaud, C., Arbic, B. K., Shriver, J. F., Qiao, F., Xiao, B., Biastoch, A., Schubert, R., Fox-Kemper, B., Dewar, W. K., and Wallcraft, A. (2022). Cloud-based framework for inter-comparing submesoscale-permitting realistic ocean models. Geoscientific Model Development, 15, 5829–5856. https://doi.org/10.5194/gmd-15-5829-2022
[62] Streffing, J., Sidorenko, D., Semmler, T., Zampieri, L., Scholz, P., Andrés-Martínez, M., Koldunov, N., Rackow, T., Kjellsson, J., Goessling, H., Athanase, M., Wang, Q., Hegewald, J., Sein, D. V., Mu, L., Fladrich, U., Barbi, D., Gierz, P., Danilov, S., Juricke, S., Lohmann, G., and Jung, T. (2022). AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model. Geoscientific Model Development, 15, 6399–6427. https://doi.org/10.5194/gmd-15-6399-2022
[61] Ejarque, et al. (2022). Enabling dynamic and intelligent workflows for HPC, data analytics, and AI convergence. Future Generation Computer Systems, 134. https://doi.org/10.1016/j.future.2022.04.014
[60] Wilken-Jon von Appen, Till Baumann, Markus Janout, Koldunov, N., Yueng-Djern Lenn, Robert S. Pickart, Robert B. Scott, and Qiang Wang (2022). Eddies and the distribution of eddy kinetic energy in the Arctic Ocean. Oceanography, 35(3–4), 42–51. https://doi.org/10.5670/oceanog.2022.122
[59] Hutter, N., Bouchat, A., Dupont, F., Dukhovskoy, D., Koldunov, N., Lee, Y. J., et al. (2022). Sea Ice Rheology Experiment (SIREx): 2. Evaluating linear kinematic features in high-resolution sea ice simulations. Journal of Geophysical Research: Oceans, 127, e2021JC017666. https://doi.org/10.1029/2021JC017666
[58] Khosravi, N., Wang, Q., Koldunov, N., Hinrichs, C., Semmler, T., Danilov, S., and Jung, T. (2022). The Arctic Ocean in CMIP6 models: Biases and projected changes in temperature and salinity. Earth’s Future, 10, e2021EF002282. https://doi.org/10.1029/2021EF002282
2021
[57] Danilov, S., Koldunov, N. V., Sidorenko, D., Scholz, P., and Wang, Q. (2021). On the damping time scale of EVP sea ice dynamics. Journal of Advances in Modeling Earth Systems, 13, e2021MS002561. https://doi.org/10.1029/2021MS002561
[56] Sidorenko, D., Danilov, S., Streffing, J., Fofonova, V., Goessling, H., Scholz, P., et al. (2021). AMOC variability and watermass transformations in the AWI climate model. Journal of Advances in Modeling Earth Systems, 13, e2021MS002582. https://doi.org/10.1029/2021MS002582
[55] Hinrichs, C., Wang, Q., Koldunov, N., Mu, L., Semmler, T., Sidorenko, D., and Jung, T. (2021). Atmospheric wind biases: A challenge for simulating the Arctic Ocean in coupled models? Journal of Geophysical Research: Oceans, 126, e2021JC017565. https://doi.org/10.1029/2021JC017565
[54] Semmler, T., Jungclaus, J., Danek, C., Goessling, H. F., Koldunov, N. V., Rackow, T., and Sidorenko, D. (2021). Ocean model formulation influences transient climate response. Journal of Geophysical Research: Oceans, 126, e2021JC017633. https://doi.org/10.1029/2021JC017633
[53] Scholz, P., Sidorenko, D., Danilov, S., Wang, Q., Koldunov, N., Sein, D., and Jung, T. (2021). Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part II: Partial bottom cells, embedded sea ice and vertical mixing library CVMIX. Geoscientific Model Development. https://doi.org/10.5194/gmd-15-335-2022
[52] Dmitrenko, I. A., Petrusevich, V. Y., Kosobokova, K., Komarov, A. S., Bouchard, C., Geoffroy, M., Koldunov, N. V., Babb, D. G., Kirillov, S. A., and Barber, D. G. (2021). Coastal polynya disrupts the acoustic backscatter diurnal signal over the eastern Laptev Sea shelf. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2021.791096
[51] Xu, J., Koldunov, N. V., Xu, M., Zhu, X., Fraedrich, K., Jiang, X., and Zhi, X. (2020). Impacts of Indian Ocean Dipole-like SST on Rice Yield Anomalies in Jiangsu Province. Frontiers in Earth Science, 8, 690. https://doi.org/10.3389/feart.2020.568365
2020
[50] Wang, Q., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Scholz, P., et al. (2020). Eddy Kinetic Energy in the Arctic Ocean from a Global Simulation with a 1-km Arctic. Geophysical Research Letters, 47, e2020GL088550. https://doi.org/10.1029/2020GL088550
[49] Juricke, S., Danilov, S., Koldunov, N. V., Oliver, M., and Sidorenko, D. (2020). Ocean kinetic energy backscatter parametrization on unstructured grids: Impact on global eddy-permitting simulations. Journal of Advances in Modeling Earth Systems, 12, e2019MS001855. https://doi.org/10.1029/2019MS001855
[48] Juricke, S., Danilov, S., Koldunov, N., Oliver, M., Sein, D. V., Sidorenko, D., and Wang, Q. (2020). A kinematic kinetic energy backscatter parametrization: From implementation to global ocean simulations. Journal of Advances in Modeling Earth Systems, 12, e2020MS002175. https://doi.org/10.1029/2020MS002175
[47] Sidorenko, D., Sergey, D., Fofonova, V., Cabos, W., Koldunov, N., Scholz, P., et al. (2020). AMOC, watermass transformations and their responses to changing resolution in the Finite-volumE Sea ice-Ocean Model. Journal of Advances in Modeling Earth Systems, 12, e2020MS002317. https://doi.org/10.1029/2020MS002317
[46] Xu, J., Koldunov, N. V., Xu, M., Zhu, X., Fraedrich, K., Jiang, X., Zhu, S., and Zhi, X. (2020). Impacts of Indian Ocean Dipole-like SST on Rice Yield Anomalies in Jiangsu Province. Frontiers in Earth Science - Atmospheric Science. https://doi.org/10.3389/feart.2020.568365
[45] Sidorenko, D., Danilov, S., Koldunov, N., Scholz, P., and Wang, Q. (2020). Simple algorithms to compute meridional overturning and barotropic streamfunction on unstructured meshes. Geoscientific Model Development. https://doi.org/10.5194/gmd-13-3337-2020
[44] Wang, Q., Wekerle, C., Wang, X., Danilov, S., Koldunov, N., Sein, D., et al. (2020). Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline. Geophysical Research Letters, 47, e2019GL086682. https://doi.org/10.1029/2019GL086682
[43] Semmler, T., Danilov, S., Gierz, P., Goessling, H., Hegewald, J., Hinrichs, C., Koldunov, N. V., Khosravi, N., Mu, L., Rackow, T., Sein, D., Sidorenko, D., Wang, Q., and Jung, T. (2020). Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. Journal of Advances in Modeling Earth Systems, 12, e2019MS002009. https://doi.org/10.1029/2019MS002009
[42] Chassignet, E. P., Yeager, S. G., Fox-Kemper, B., Bozec, A., Castruccio, F., Danabasoglu, G., Kim, W. M., Koldunov, N., Li, Y., Lin, P., Liu, H., Sein, D., Sidorenko, D., Wang, Q., and Xu, X. (2020). Impact of horizontal resolution on global ocean-sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development. https://doi.org/10.5194/gmd-13-4595-2020
[41] Tsujino, H., et al. (2020). Evaluation of global ocean–sea-ice model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2). Geoscientific Model Development. https://doi.org/10.5194/gmd-13-3643-2020
[40] Eyring, V., et al. (2020). ESMValTool v2.0 – Extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geoscientific Model Development. https://doi.org/10.5194/gmd-13-3383-2020
[39] de la Vara, A., Cabos, W., Sein, D. V., Sidorenko, D., Koldunov, N. V., Koseki, S., Soares, P. M. M., and Danilov, S. (2020). On the impact of atmospheric vs oceanic resolutions on the representation of the sea surface temperature in the South Eastern Tropical Atlantic. Climate Dynamics. https://doi.org/10.1007/s00382-020-05256-9
[38] Hirschi, J. J.‐M., Barnier, B., Böning, C., Biastoch, A., Blaker, A. T., Coward, A., et al. (2020). The Atlantic meridional overturning circulation in high resolution models. Journal of Geophysical Research: Oceans, 125, e2019JC015522. https://doi.org/10.1029/2019JC015522
[37] Righi, M., Andela, B., Eyring, V., Lauer, A., Predoi, V., Schlund, M., Vegas-Regidor, J., Bock, L., Brötz, B., de Mora, L., Diblen, F., Dreyer, L., Drost, N., Earnshaw, P., Hassler, B., Koldunov, N., Little, B., Loosveldt Tomas, S., and Zimmermann, K. (2020). ESMValTool v2.0 - Technical overview. Geoscientific Model Development. hhttps://doi.org/10.5194/gmd-13-1179-2020
2019
[36] Koldunov, N. V., Aizinger, V., Rakowsky, N., Scholz, P., Sidorenko, D., Danilov, S., and Jung, T. (2019). Scalability and some optimization of the Finite-volumE Sea ice Ocean Model, Version 2.0 (FESOM2). Geoscientific Model Development, 12, 3991–4012. https://doi.org/10.5194/gmd-12-3991-2019
[35] Koldunov, N. V., Danilov, S., Sidorenko, D., Hutter, N., Losch, M., Goessling, H., Rakowsky, N., Scholz, P., Sein, D., Wang, Q., and Jung, T. (2019). Fast EVP solutions in a high-resolution sea ice model. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2018MS001485
[34] Sidorenko, D., Goessling, H. F., Koldunov, N. V., Scholz, P., Danilov, S., Barbi, D., et al. (2019). Evaluation of FESOM2.0 coupled to ECHAM6.3: Pre-industrial and HighResMIP simulations. Journal of Advances in Modeling Earth Systems, 11. https://doi.org/10.1029/2019MS001696
[33] Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N., and Jung, T. (2019). Assessment of the Finite VolumE Sea Ice Ocean Model (FESOM2.0), Part I: Description of selected key model elements and comparison to its predecessor version. Geoscientific Model Development. https://doi.org/10.5194/gmd-12-4875-2019
[32] Rackow, T., Sein, D. V., Semmler, T., Danilov, S., Koldunov, N. V., Sidorenko, D., Wang, Q., and Jung, T. (2019). Sensitivity of deep ocean biases to horizontal resolution in prototype CMIP6 simulations with AWI-CM1.0. Geoscientific Model Development, 12, 2635–2656. https://doi.org/10.5194/gmd-12-2635-2019
[31] Wang, Q., Wekerle, C., Danilov, S., Sidorenko, D., Koldunov, N., Sein, D., Rabe, B., and Jung, T. (2019). Recent Sea Ice Decline Did Not Significantly Increase the Total Liquid Freshwater Content of the Arctic Ocean. Journal of Climate, 32, 15–32. https://doi.org/10.1175/JCLI-D-18-0237.1
[30] Cabos, W., Sein, D. V., Durán-Quesada, A., Liguori, G., Koldunov, N. V., Martínez, B., Alvarez, F., Sieck, K., Limareva, N., and Pinto, J. G. (2019). Dynamical downscaling of historical climate over CORDEX Central America domain with a Regionally coupled atmosphere-ocean model. Climate Dynamics, 52, 4305. https://doi.org/10.1007/s00382-018-4381-2
[29] Wang, Q., Wang, X., Wekerle, C., Danilov, S., Jung, T., Koldunov, N., Lind, S., Sein, D., Shu, Q., and Sidorenko, D. (2019). Ocean heat transport into the Barents Sea: Distinct controls on the upward trend and interannual variability. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL083837
[28] Akperov, M., Rinke, A., Mokhov, I. I., Semenov, V. A., Parfenova, M. R., Matthes, H., et al. (2019). Future projections of cyclone activity in the Arctic for the 21st century from regional climate models (Arctic-CORDEX). Global and Planetary Change, 182, 103005. https://doi.org/10.1016/j.gloplacha.2019.103005
2018
[27] Koldunov, N. V. and Cristini, L. (2018). Programming as a soft skill for project managers: How to have a computer take over some of your work. Advances in Geosciences, 45, 295–303. https://doi.org/10.5194/adgeo-45-295-2018
[26] Xu, J., Koldunov, N. V., Remedio, A. R. C., Dein, D. V., Rechid, D., Zhi, X., Jiang, X., Xu, M., Zhu, X., Fraedrich, K., and Jacob, D. (2018). Downstream effect of Hengduan Mountains on East China in the REMO regional climate model. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-018-2721-0
[25] Sidorenko, D., Koldunov, N., Wang, Q., Danilov, S., Goessling, H. F., Gurses, O., Scholz, P., Sein, D. V., Volodin, E., Wekerle, C., and Jung, T. (2018). Influence of a salt plume parameterization in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10. https://doi.org/10.1029/2018MS001291
[24] Sein, D. V., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Cabos, W., Rackow, T., Scholz, P., Semmler, T., Wang, Q., and Jung, T. (2018). The relative influence of atmospheric and oceanic model resolution on the circulation of the North Atlantic Ocean in a coupled climate model. Journal of Advances in Modeling Earth Systems, 10. https://doi.org/10.1029/2018MS001327
[23] Xu, J., Koldunov, N. V., Remedio, A. R. C., Sein, D. V., Zhi, X., Jiang, X., Xu, M., Zhu, X., Fraedrich, K., and Jacob, D. (2018). On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Climate Dynamics. https://doi.org/10.1007/s00382-018-4085-7
[22] Wang, Q., Wekerle, C., Danilov, S., Koldunov, N. V., Sidorenko, D., Sein, D. V., Rabe, B., and Jung, T. (2018). Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077901
[21] Ivanov, V., Smirnov, A., Alexeev, V., Koldunov, N. V., Repina, I., and Semenov, V. (2018). Contribution of convection-induced heat flux to winter ice decay in the Western Nansen Basin. Journal of Geophysical Research: Oceans, 123, 6581–6597. https://doi.org/10.1029/2018JC013995
[20] Akperov, M., Rinke, A., Mokhov, I. I., Matthes, H., Semenov, V. A., Adakudlu, M., Cassano, J., Christensen, J. H., Dembitskaya, M. A., Dethloff, K., Fettweis, X., Glisan, J., Gutjahr, O., Heinemann, G., Koenigk, T., Koldunov, N. V., Laprise, R., Mottram, R., Nikiema, O., Scinocca, J. F., Sein, D., Sobolowski, S., Winger, K., and Zhang, W. (2018). Cyclone activity in the Arctic from an ensemble of regional climate models (Arctic CORDEX). Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1002/2017JD027703
2017
[19] Sein, D. V., Koldunov, N. V., Danilov, S., Wang, Q., Sidorenko, D., Fast, I., Rackow, T., Cabos, W., and Jung, T. (2017). Ocean Modeling on A Mesh with Resolution Following the Local Rossby Radius. Journal of Advances in Modeling Earth Systems, 9, 2601–2614. https://doi.org/10.1002/2017MS001099
[18] Koldunov, N. V., Köhl, A., Serra, N., and Stammer, D. (2017). Sea ice assimilation into a coupled ocean-sea ice model using its adjoint. The Cryosphere, 11, 2265–2281. https://doi.org/10.5194/tc-11-2265-2017
2016
[17] Ivanov, Vladimir, Vladimir Alexeev, Koldunov, N. V., Irina Repina, Anne Britt Sandø, Lars Henrik Smedsrud, and Alexander Smirnov. (2016). Arctic Ocean heat impact on regional ice decay: A suggested positive feedback. Journal of Physical Oceanography, 46(5), 1437–1456. https://doi.org/10.1175/JPO-D-15-0144.1
[16] Cabos, W., Sein, D. V., Pinto, J. G., Fink, A. H., Koldunov, N. V., Alvarez, F., Izquierdo, A., Keenlyside, N., and Jacob, D. (2016). The South Atlantic Anticyclone as a key player for the representation of the tropical Atlantic climate in coupled climate models. Climate Dynamics, 1–19. https://doi.org/10.1007/s00382-016-3319-9
2015
[15] Bashmachnikov, I., Nascimento, A., Neves, F., Menezes, T., and Koldunov, N. V. (2015). Distribution of intermediate water masses in the subtropical northeast Atlantic. Ocean Science, 11, 803–827. https://doi.org/10.5194/os-11-803-2015
[14] Koldunov, N. V., P. Kumar, R. Rasmussen, A. L. Ramanathan, A. Nesje, M. Engelhardt, M. Tiwari, A. Haensler, and D. Jacob. (2015). Identifying climate change information needs for the Himalaya region - Results from the GLACINDIA Stakeholder Workshop and Training Program. Bulletin of the American Meteorological Society. https://doi.org/10.1175/BAMS-D-15-00160.1
[13] Dmitrenko, I. A., S. A. Kirillov, S. Rysgaard, D. G. Barber, D. G. Babb, L. Toudal Pedersen, Koldunov, N. V., W. Boone, O. Crabeck, and J. Mortensen. (2015). Polynya impacts on water properties in a Northeast Greenland Fiord. Estuarine, Coastal and Shelf Science, 153, 10–17. https://doi.org/10.1016/j.ecss.2014.11.027
2014
[12] Koldunov, N. V., Nuno Serra, Armin Köhl, Detlef Stammer, Olivier Henry, Pierre Prandi, Anny Cazenave, Per Knudsen, Ole Baltazar Andersen, Yongqi Gao, and Johnny Johannessen. (2014). Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970–2009. Journal of Geophysical Research: Oceans, 119. https://doi.org/10.1002/2014JC010170
[11] Dmitry Sein, Koldunov, N., Joaquim G. Pinto, and William Cabos. (2014). Sensitivity of simulated regional Arctic climate to the choice of coupled model domain. Tellus A, 66, 23966. https://doi.org/10.3402/tellusa.v66.23966
[10] Igor A. Dmitrenko, Sergey A. Kirillov, Nuno Serra, Koldunov, N. V., Vladimir V. Ivanov, Ursula Schauer, Igor V. Polyakov, David Barber, Markus Janout, Vidar S. Lien, Mikhail Makhotin, and Yevgeny Aksenov. (2014). Heat loss from the Atlantic water layer in the St. Anna Trough (northern Kara Sea): Causes and consequences. Ocean Science, 10, 719–730. https://doi.org/10.5194/os-10-719-2014
[9] J. A. Johannessen, R. P. Raj, J. E. O. Nilsen, T. Pripp, P. Knudsen, F. Counillon, D. Stammer, L. Bertino, O. B. Andersen, N. Serra, and Koldunov, N. (2014). Toward improved estimation of the dynamic topography and ocean circulation in the high latitude and Arctic Ocean. Surveys in Geophysics. https://doi.org/10.1007/s10712-013-9270-y
2013
[8] Koldunov, N. V., A. Köhl, and D. Stammer. (2013). Properties of Adjoint Sea Ice Sensitivities to Atmospheric Forcing and Implications for the Causes of the Long Term Trend of Arctic Sea Ice. Climate Dynamics, 41(2), 227–241. https://doi.org/10.1007/s00382-013-1816-7
[7] Ivanov, V. V., V. Alexeev, T. Alexeeva, Koldunov, N. V., I. Repina, and A. Smirnov. (2013). Does Arctic Ocean Ice Cover Become Seasonal? Issledovanie Zemli iz Kosmosa, 4, 50–65. (in Russian)
2012
[6] O. Henry, P. Prandi, W. Llovel, A. Cazenave, S. Jevrejeva, D. Stammer, and Koldunov, N. (2012). Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: Contribution of the steric and mass components. Journal of Geophysical Research, 117, C06023. https://doi.org/10.1029/2011JC007706
[5] Vladimir Ivanov, Irina Repina, Vladimir Alexeev, Koldunov, N. V., and Alexander Smirnov. (2012). Tracing Atlantic Water signature in the Arctic sea ice cover. Advances in Meteorology, 2012. https://doi.org/10.1155/2012/201818
[4] I. A. Dmitrenko, S. A. Kirillov, V. V. Ivanov, B. Rudels, N. Serra, and Koldunov, N. V. (2012). Atlantic modified halocline water over the Laptev Sea continental margin: Historical data analysis. Journal of Climate, 25, 5556–5565. https://doi.org/10.1175/JCLI-D-11-00336.1
2010
[3] Koldunov, N. V., Detlef Stammer, and Jochem Marotzke. (2010). Present-day Arctic sea ice variability in the coupled ECHAM5/MPI-OM model. Journal of Climate, 23(10), 2520–2543. https://doi.org/10.1175/2009JCLI3065.1
2009
[2] Igor A. Dmitrenko, Sergey A. Kirillov, Vladimir V. Ivanov, Rebecca A. Woodgate, Igor V. Polyakov, Koldunov, N., Louis Fortier, Catherine Lalande, Lars Kaleschke, Dorothea Bauch, Jens A. Hölemann, and Leonid A. Timokhov. (2009). Seasonal modification of the Arctic Ocean intermediate water layer off the eastern Laptev Sea continental shelf break. Journal of Geophysical Research, 114(C6), June 2009. https://doi.org/10.1029/2008JC005229
[1] Igor A. Dmitrenko, Dorothea Bauch, Sergey A. Kirillov, Koldunov, N., Peter J. Minnett, Vladimir V. Ivanov, Jens A. Hölemann, and Leonid A. Timokhov. (2009). Barents Sea upstream events impact the properties of Atlantic Water inflow into the Arctic Ocean: Evidence from 2005 to 2006 downstream observations. Deep Sea Research Part I: Oceanographic Research Papers, 56(4), 513–527. https://doi.org/10.1016/j.dsr.2008.11.005